【可視化】すると一目瞭然!セクター別2022年と2020年比較、テクノロジーとエネルギーの立場が逆転している!

スポンサーリンク
投資

テクノロジーセクターのETFとエネルギーセクターETFで2020年と2022年で全く逆の動きをしているようです。

実際のS&P500で正規化をかけた相対パフォーマンスは以下のようになります。

2020年週足ベース

2020 US Sector ETF Year to Date performance (S&P500 Normalized)

2022年週足ベース(2022/04/10まで)

2022 US Sector ETF Year to Date performance (S&P500 Normalized)

参考までに、2021年

2021 US Sector ETF Year to Date performance (S&P500 Normalized)

非常に強かったものが将来も強いわけではないですし、弱かったものもそれが永遠に続くわけではないという良い例ですね。

今度はどうなるかわかりませんが、引き続き注目となります。


ディスクレーマー

投資に関する免責事項情報の提供・作業代行を目的としており、投資勧誘を目的とするものではありません

---

投資に関する記事をご紹介します。

【コピペで動く!】日本株、米国株で個別銘柄ベータ値(β値)を簡単に調べる方法 Python 米国株 Webサービス&コード 【Google Colabで違いをみつけろ!】
【コピペで動く!】Pythonで1.5GBのcsvファイル読み込み高速化:1分5秒⇒4秒程度 DASK , pickle (Pythonコードあり)
【コピペで動く!】Google ColabでPython を用いての 効率的フロンティア と ポートフォリオの最適化 Efficient Frontier & Portfolio Optimization with Python [Part 2/2]
【コピペで動く!】20行で資産運用モデル作成 Google ColabのPythonで 米国株の株価を取得し、グラフ・チャートを表示
【解決】スクレイピングでHTTP Error 403: Forbiddenでアクセスできないときに試すべき方法【コピペで動く!】【Google Colab:Python:pd.read_html,selenium】
米国債のゼロクーポン債STRIPSについてのメモ
過去50年間のS&P500の季節性の値動きから負けにくいポジション構築はできるのか考える・大統領選挙のアノマリー対応!【コピペで動く!】Google ColabのPythonで自分で調べてみよう!
曜日による米国株指数(S&P500)のパフォーマンスに違いはあるのか?有利なポジション取りはできるのか?【Google ColabのPython:コピペで動く!】Twitterで出てくる知見は本当か自分で調べてみよう。
自動化・効率化でなにができるのか!Google FinanceやYahoo Financeからデータ取得して年初来パフォーマンスや週次騰落率のファクターチェック
自動化・効率化できます!金融向けGoogle スプレッドシートのすぐ使える簡単な使い方4選!(Google Finance,セントルイス連銀,アメリカ合衆国財務省,スクレイピング)【コピペで動く!】
ボラティリティ クラスタリング(Volatility Clustering)について:Google ColabのPythonでの相場環境分析
【コピペで動く!】IB証券(インタラクティブ・ブローカーズ証券 )へのPythonでのAPI接続 ib_insync [自分が使っているPythonコード]
【コピペで動く!】レイ・ダリオ推奨「オール・ウェザー戦略」をETFで構築するには? ETFの手軽さとそのパフォーマンスの高さとは!【違いをみつけろ!】
【違いをみつけろ!】StockChartsの使い方を紹介します!12枚のミニチャート表示や、 米国株配当分考慮パフォーマンスや配当・逆イールド・相対比較が可能です!
株価時系列データを分析する上で正規化を行う事の重要性について紹介する【違いをみつけろ!】

コメント

タイトルとURLをコピーしました